Skip to content
- W. Fang†, W. Guo†, R. Lu†, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, H. Niu, S. Wang, Y. Liu, Y. Mao, C. Zhang, B. You, Y. Pang, L. Duan, X. Yang, F. Song, T. Zhai, G. Wang, X. Guo, B. Tan, T. Yao*, Z. Wang* and B. Y. Xia*, Durable CO2 conversion in the proton-exchange membrane system, Nature, 2024, 626, 86-91. https://doi.org/10.1038/s41586-023-06917-5
- Z. Xu†, R. Lu†, Z. Lin†, W. Wu, H. Tsai, Q. Lu, Y. C. Li, S. Hung*, C. Song, J. C. Yu, Z. Wang* and Y. Wang*, Electroreduction of CO2 to methane with triazole molecular catalysts. Nat. Energy, 2024, 10.1038/s41560-024-01645-0. https://doi.org/10.1038/s41560-024-01645-0
- P. Papangelakis†, R. K. Miao†, R. Lu†, H. Liu†, X. Wang†, A. Ozden, S. Liu, N. Sun, C. P. O’Brien, Y. Hu, M. Shakouri, Q. Xiao, M. Li, B. Khatir, J. E. Huang, Y. Wang, Y. C. Xiao, F. Li, A. S. Zeraati, Q. Zhang, P. Liu, K. Golovin, J. Y. Howe, H. Liang, Z. Wang*, J. Li*, E. H. Sargent and D. Sinton*, Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design, Nat. Energy, 2024, 9, 1011. https://doi.org/10.1038/s41560-024-01577-9
- Y. Dai†, R. Lu†, C. Zhang†, J. Li, Y. Yuan, Y. Mao, C. Ye, Z. Cai, J. Zhu, J. Li, R. Yu, L. Cui, S. Zhao, Q. An, G. He, G. I. N. Waterhouse, P. R. Shearing, Y. Ren, J. Lu*, K. Amine*, Z. Wang* and L. Mai*, Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries, Nat. Catal., 2024, 7, 776. https://doi.org/10.1038/s41929-024-01169-6
- Y. Yang†, C. Zhang†, C. Zhang†, Y. Shi, J. Li, B. Johannessen, Y. Liang, S. Zhang, Q. Song, H. Zhang, J. Huang, J. Ke, L. Zhang, Q. Song, J. Zeng, Y. Zhang, Z. Geng, P. S. Wang*, Z. Wang*, J. Zeng* and F. Li*, Ligand-tuning copper in coordination polymers for efficient electrochemical C-C coupling, Nat. Commun., 2024, 15, 6316. https://doi.org/10.1038/s41467-024-50791-2
- C. Xia†, X. Wang†, C. He, R. Qi, D. Zhu, R. Lu, F. M. Li, Y. Chen, S. Chen, B. You, T. Yao, W. Guo, F. Song*, Z. Wang* and B. Y. Xia*, Highly Selective Electrocatalytic CO2 Conversion to Tailored Products through Precise Regulation of Hydrogenation and C-C Coupling, J. Am. Chem. Soc., 2024, DOI: 10.1021/jacs.4c07502. https://pubs.acs.org/doi/10.1021/jacs.4c07502
- L. Yan†, Y. Mao†, Y. Li, Q. Sha, K. Sun, P. Li, G. I. N. Waterhouse, Z. Wang*, S. Tian* and X. Sun*, Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 2024, e202413179. https://doi.org/10.1002/anie.202413179
- G. Chen†, R. Lu†, C. Ma†, X. Zhang, Z. Wang*, Y. Xiong and Y. Han*, A Long-Range Disordering RuO2 Catalyst for Highly Efficient Acidic Oxygen Evolution Electrocatalysis, Angew. Chem. Int. Ed., 2024, e202411603. https://doi.org/10.1002/anie.202411603
- Yan†, D. Wang†, M. Li†, R. Lu, M. Lu, P. Li, K. Wang, S. Jin and Z. Wang* and S. Tian*, Hexa-atom Pt Catalyst Fabricated by a Ligand Engineering Strategy for Efficient Hydrogen Oxidation Reaction, Angew. Chem. Int. Ed., 2024, e202410832. https://doi.org/10.1002/anie.202410832
- Cui†, Z. Ren†, C. Ma, B. Chen, G. Chen, R. Lu, W. Zhu, T. Gan*, Z. Wang*, Z. Zhuang and Y. Han*, Dilute RuCo Alloy Synergizing Single Ru and Co Atoms as Efficient and CO-Resistant Anode Catalyst for Anion Exchange Membrane Fuel Cells, Angew. Chem. Int. Ed., 2024, 63, e202404761. https://doi.org/10.1002/anie.202404761
- Fang†, R. Lu†, F. M. Li*, C. He, D. Wu, K. Yue, Y. Mao, W. Guo, B. You, F. Song, T. Yao, Z. Wang* and B. Y. Xia*, Low-coordination Nanocrystalline Copper-based Catalysts through Theory-guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene, Angew. Chem. Int. Ed., 2024, 63, e202319936. https://doi.org/10.1002/anie.202319936
- G. Li, C. Zhang, Y. Liu, Y. Song, W. Guo, L. Huang, J. Su, Q. Zhang, Y. Xin, T. Feng, X. Cao, M. He, T. K. Kwok, J. W. Y. Lam, Z. Jin, B. Z. Tang, Z. Wang* and R. Ye*, Molecular Engineering of Poly(Ionic Liquid) for Direct and Continuous Production of Pure Formic Acid from Flue Gas, Adv. Mater., 2024, 2409390, https://doi.org/10.1002/adma.202409390
- J. Wu, Y. Mao, S. Yi, S. Ray, W. Gao* and Z. Wang*, Mechanistic insight into the destruction of perfluoroalkyl acids on gallium oxide, Appl. Catal., B, 2024, 343, 123556. https://doi.org/10.1016/j.apcatb.2023.123556
- Y. Zhao, S. Hu, Q. Yuan, A. Wang, K. Sun, Z. Wang*, M. Fan* and J. Jiang, Copper cluster regulated by N, B atoms for enhanced CO2 electroreduction to formate, J. Colloid Interface Sci., 2024, https://doi.org/10.1016/j.jcis.2024.08.236
- K. Yao†, J. Li*, A. Ozden, H. Wang, N. Sun, P. Liu, W. Zhong, W. Zhou, J. Zhou, X. Wang, H. Liu, Y. Liu, S. Chen, Y. Hu, Z. Wang, D. Sinton* and H. Liang*, In situ copper faceting enables efficient CO2/CO electrolysis, Nat. Commun., 2024, 15, 1749. https://doi.org/10.1038/s41467-024-45538-y
- H. Niu, L. Huang, Y. Qin, R. Qi, B. Mei, D. Wu, F. M. Li, B. You, Q. Li, Y. Yao, Z. Wang, T. Yao, S. Ding, W. Guo, Y. Chen, Y. Su, F. Song and B. Y. Xia, Hydrogen Peroxide Spillover on Platinum-Iron Hybrid Electrocatalyst for Stable Oxygen Reduction, J Am Chem Soc, 2024, DOI: 10.1021/jacs.4c06904. https://pubs.acs.org/doi/10.1021/jacs.4c06904
- J. Han†, H. Wang, Y. Wang, H. Zhang, J. Li, Y. Xia, J. Zhou, Z. Wang, M. Luo, Y. Wang, N. Wang, E. Cortes, Z. Wang, A. Vomiero, Z. F. Huang, H. Ren, X. Yuan, S. Chen, D. Feng, X. Sun, Y. Liu and H. Liang*, Lattice Oxygen Activation through Deep Oxidation of Co4N by Jahn-Teller-Active Dopants for Improved Electrocatalytic Oxygen Evolution, Angew. Chem. Int. Ed., 2024, DOI: 10.1002/anie.202405839. https://doi.org/10.1002/anie.202405839
- Chen†, J. Zhang†, W. Chen†, R. Lu†, C. Ma, Z. Wang* and Y. Han*, Designing the framework structure of noble-metal based nanoalloy catalysts driving redox electrocatalysis, Chem. Sci., 2024, DOI: 10.1039/d4sc03142c. https://doi.org/10.1039/D4SC03142C
- C. Zhang†, X. Wang† and Z. Wang*, Large language model in electrocatalysis, Chinese J. Catal., 2024, 59, 7-14. https://doi.org/10.1016/S1872-2067(23)64612-1
- Wang†, R. Lu†, B. Pan, C. Yang, M. Zhuansun, J. Li, Y. Xu, S. F. Hung, G. Zheng, Y. Li*, Z. Wang* and Y. Wang*, Enhanced Carbon-Carbon Coupling at Interfaces with Abrupt Coordination Number Changes, ChemSusChem, 2024, DOI: 10.1002/cssc.202400150, e202400150. https://doi.org/10.1002/cssc.202400150
- X. Wang†, Y. Mao and Z. Wang*, Plasmonic‐assisted Electrocatalysis for CO2 Reduction Reaction, ChemElectroChem, 2024, 11. https://doi.org/10.1002/celc.202300805
- X. Ge†, C. Zhang†, P. Gogoi, M. Janpandit, S. Prakash, L. Yin, Z. Wang* and Y. C. Li*, Understanding the Role of Proton and Hydroxide Transport in Forward‐Bias Bipolar Membrane for Electrochemical Applications, Adv. Mater. Interfaces, 2024, 11. https://doi.org/10.1002/admi.202400034
- Y. Zhao†, Q. Yuan, R. Xu, C. Zhang, K. Sun, A. Wang, A. Zhang, Z. Wang*, J. Jiang* and M. Fan*, Boosting electrochemical conversion of CO2 to ethanol through the confinement of pyridinic N-B layer on copper nanoparticles, Appl. Catal. B-Environ., 2024, 355. https://doi.org/10.1016/j.apcatb.2024.124168
- Z. Li†, J. Xiong, Y. Huang, Y. Huang, G. I. N. Waterhouse, Z. Wang, Y. Mao*, Z. Liang* and X. Luo*, Synergy mechanism of confined effect and Z-scheme electron transfer in core–shell structure photocatalyst for boosting photoreduction CO2 activity, Chem. Eng. J., 2024, 486. https://doi.org/10.1016/j.cej.2024.150304
- M. Li†, R. Lu, Y. Mao, Z. Hu and Z. Wang*, First-Principles Landscape of Single Atomic Catalysts to Metal Catalysts, J. Phys. Chem. C, 2024, 128, 1964-1970. https://doi.org/10.1021/acs.jpcc.3c07782
- Z. Li†, J. Xiong†, H. Song, S. Liu, Y. Huang, Y. Huang, G. I. N. Waterhouse, Z. Wang, Y. Mao*, Z. Liang* and X. Luo*, Synergistically enhancing CO2 adsorption/activation and electron transfer in ZIF-67/Ti3C2Tx MXene for boosting photocatalytic CO2 reduction, Sep. Purif. Technol., 2024, 341. https://doi.org/10.1016/j.seppur.2024.126817
- E. J. Cheng†, T. Yang, Y. Liu, L. Chai, R. Garcia-Mendez, E. Kazyak, Z. Fu, G. Luo, F. Chen, R. Inada, V. Badilita, H. Duan, Z. Wang, J. Qin, H. Li, S.-i. Orimo and H. Kato*, Correlation between mechanical properties and ionic conductivity of polycrystalline sodium superionic conductors: a relative density-dominant relationship, Mater. Today Energy, 2024. https://doi.org/10.1016/j.mtener.2024.101644
- J. Jin†, J. Wicks†, Q. Min†, J. Li†, Y. Hu, J. Ma, Y. Wang, Z. Jiang, Y. Xu, R. Lu, G. Si, P. Papangelakis, M. Shakouri, Q. Xiao, P. Ou, X. Wang, Z. Chen, W. Zhang, K. Yu, J. Song, X. Jiang, P. Qiu, Y. Lou, D. Wu, Y. Mao, A. Ozden, C. Wang, B. Y. Xia, X. Hu, V. P. Dravid, Y. M. Yiu, T. K. Sham, Z. Wang, D. Sinton, L. Mai*, E. H. Sargent* and Y. Pang*, Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction, Nature, 2023, 617, 724-729. https://doi.org/10.1038/s41586-023-05918-8
- Fan†, J. E. Huang†, R. K. Miao†, Y. Mao†, P. Ou†, F. Li, X.-Y. Li, Y. Cao, Z. Zhang, J. Zhang, Y. Yan, A. Ozden, W. Ni, Y. Wang, Y. Zhao, Z. Chen, B. Khatir, C. P. O’Brien, Y. Xu, Y. C. Xiao, G. I. N. Waterhouse, K. Golovin, Z. Wang*, E. H. Sargent* and D. Sinton*, Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis, Nat. Catal., 2023, 6, 763-772. https://doi.org/10.1038/s41929-023-01003-5
- J. Zhu†, J. Li†, R. Lu†, R. Yu, S. Zhao, C. Li, L. Lv, L. Xia, X. Chen, W. Cai, J. Meng, W. Zhang, X. Pan, X. Hong, Y. Dai, Y. Mao, J. Li, L. Zhou, G. He, Q. Pang, Y. Zhao, C. Xia*, Z. Wang*, L. Dai* and L. Mai*, Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction, Nat. Commun., 2023, 14, 4670. https://doi.org/10.1038/s41467-023-40342-6
- G. Chen†, W. Chen†, R. Lu†, C. Ma†, Z. Zhang, Z. Huang, J. Weng, Z. Wang*, Y. Han* and W. Huang*, Near-Atomic-Scale Superfine Alloy Clusters for Ultrastable Acidic Hydrogen Electrocatalysis, J. Am. Chem. Soc., 2023, 145, 22069-22078. https://doi.org/10.1021/jacs.3c07541
- N. Wang†, P. Ou†, R. K. Miao†, Y. Chang†, Z. Wang†, S. F. Hung, J. Abed, A. Ozden, H. Y. Chen, H. L. Wu, J. E. Huang, D. Zhou, W. Ni, L. Fan, Y. Yan, T. Peng, D. Sinton, Y. Liu, H. Liang* and E. H. Sargent*, Doping Shortens the Metal/Metal Distance and Promotes OH Coverage in Non-Noble Acidic Oxygen Evolution Reaction Catalysts, J. Am. Chem. Soc., 2023, 145, 7829-7836. https://doi.org/10.1021/jacs.2c12431
- N. Wang†, P. Ou, S. F. Hung, J. E. Huang, A. Ozden, J. Abed, I. Grigioni, C. Chen, R. K. Miao, Y. Yan, J. Zhang, Z. Wang, R. Dorakhan, A. Badreldin, A. Abdel-Wahab, D. Sinton, Y. Liu, H. Liang* and E. H. Sargent*, Strong-Proton-Adsorption Co-Based Electrocatalysts Achieve Active and Stable Neutral Seawater Splitting, Adv Mater., 2023, 35, e2210057. https://doi.org/10.1002/adma.202210057
- M. Luo†, A. Ozden, Z. Wang, F. Li, J. Erick Huang, S. F. Hung, Y. Wang, J. Li, D. H. Nam, Y. C. Li, Y. Xu, R. Lu, S. Zhang, Y. Lum, Y. Ren, L. Fan, F. Wang, H. H. Li, D. Appadoo, C. T. Dinh, Y. Liu, B. Chen, J. Wicks, H. Chen, D. Sinton and E. H. Sargent*, Coordination Polymer Electrocatalysts Enable Efficient CO-to-Acetate Conversion, Adv. Mater., 2023, 35, e2209567. https://doi.org/10.1002/adma.202209567
- M. Zhuansun†, Y. Liu†, R. Lu†, F. Zeng, Z. Xu, Y. Wang, Y. Yang*, Z. Wang*, G. Zheng* and Y. Wang*, Promoting CO2 Electroreduction to Multi-Carbon Products by Hydrophobicity-Induced Electro-Kinetic Retardation, Angew. Chem. Int. Ed., 2023, 62, e202309875. https://doi.org/10.1002/ange.202309875
- L. Lv†, R. Lu†, J. Zhu†, R. Yu, W. Zhang, E. Cui, X. Chen, Y. Dai, L. Cui, J. Li, L. Zhou, W. Chen, Z. Wang and L. Mai*, Coordinating the Edge Defects of Bismuth with Sulfur for Enhanced CO2 Electroreduction to Formate, Angew. Chem. Int. Ed., 2023, 62, e202303117. https://doi.org/10.1002/ange.202303117
- H. Choubisa†, J. Abed†, D. Mendoza, H. Matsumura, M. Sugimura, Z. Yao, Z. Wang, B. R. Sutherland, A. Aspuru-Guzik* and E. H. Sargent*, Accelerated chemical space search using a quantum-inspired cluster expansion approach, Matter, 2023, 6, 605-625. https://doi.org/10.1016/j.matt.2022.11.031
- Z. Huang†, R. Lu†, Y. Zhang†, W. Chen, G. Chen, C. Ma, Z. Wang*, Y. Han* and W. Huang*, A Highly Efficient pH‐Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms, Adv Funct. Mater., 2023, 33. https://doi.org/10.1002/adfm.202306333
- J. Wu†, Y. Mao, S. Yi, S. Ray, W. Gao and Z. Wang*, Mechanistic insight into the destruction of perfluoroalkyl acids on gallium oxide, Appl. Catal. B-Environ., 2024, 343. https://doi.org/10.1016/j.apcatb.2023.123556
- Zhang†, S. Chen, J. Zhu, C. Ye, Y. Mao, B. Wang, G. Zhou, L. Mai, Z. Wang*, X. Liu* and D. Wang*, Charge-Separated Pdδ--Cuδ+ Atom Pairs Promote CO2 Reduction to C2, Nano Lett., 2023, 23, 2312-2320. https://doi.org/10.1021/acs.nanolett.2c05112
- H. Wang†, H. Zhang, Y. Huang, H. Wang, A. Ozden, K. Yao, H. Li, Q. Guo, Y. Liu, A. Vomiero, Y. Wang, Z. Qian, J. Li, Z. Wang, X. Sun and H. Liang*, Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products, ACS Nano, 2023, 17, 346-354. https://doi.org/10.1021/acsnano.2c08453
- Peng†, Z. Wang†, R. Lu†, Q. Li*, Z. Wang*, Y. Zhao, L. Xu* and L. Mai, Artificial heterointerfaces of defect-rich Ni and amorphous/crystalline MoN enable efficient hydrogen evolution reaction, Chem. Eng. J., 2023, 457. https://doi.org/10.1016/j.cej.2022.141173
- J. Liu†, Z. Wang, L. Kou* and Y. Gu*, Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations, ACS Sustain. Chem. Eng., 2023, 11, 467-481. https://doi.org/10.1021/acssuschemeng.2c05212
- X. Huang†, R. Lu†, Y. Cen, D. Wang, S. Jin, W. Chen, I. Geoffrey, N. Waterhouse, Z. Wang*, S. Tian* and X. Sun*, Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction, Nano Res., 2023, 16, 9073-9080. https://doi.org/10.1007/s12274-023-5711-1
- A. Xu†, S.-F. Hung†, A. Cao†, Z. Wang, N. Karmodak, J. E. Huang, Y. Yan, A. Sedighian Rasouli, A. Ozden, F.-Y. Wu, Z.-Y. Lin, H.-J. Tsai, T.-J. Lee, F. Li, M. Luo, Y. Wang, X. Wang, J. Abed, Z. Wang, D.-H. Nam, Y. C. Li, A. H. Ip, D. Sinton, C. Dong* and E. H. Sargent*, Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation, Nat. Catal., 2022, 5, 1081-1088. https://doi.org/10.1038/s41929-022-00880-6
- Y. Xie†, P. Ou†, X. Wang†, Z. Xu, Y. C. Li, Z. Wang, J. E. Huang, J. Wicks, C. McCallum, N. Wang, Y. Wang, T. Chen, B. T. W. Lo, D. Sinton, J. C. Yu, Y. Wang* and E. H. Sargent*, High carbon utilization in CO2 reduction to multi-carbon products in acidic media, Nat. Catal., 2022, 5, 564-570. https://doi.org/10.1038/s41929-022-00788-1
- X. Wang†, P. Ou†, A. Ozden, S.-F. Hung, J. Tam, C. M. Gabardo, J. Y. Howe, J. Sisler, K. Bertens, F. P. García de Arquer, R. K. Miao, C. P. O’Brien, Z. Wang, J. Abed, A. S. Rasouli, M. Sun, A. H. Ip, D. Sinton and E. H. Sargent*, Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst, Nat. Energy, 2022, 7, 170-176. https://doi.org/10.1038/s41560-021-00967-7
- J. Zhu†, L. Xia†, R. Yu†, R. Lu, J. Li, R. He, Y. Wu, W. Zhang, X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai* and Z. Wang*, Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces, J. Am. Chem. Soc., 2022, 144, 15529-15538. https://doi.org/10.1021/jacs.2c03982
- K. Yao, J. Li, H. Wang, R. Lu, X. Yang, M. Luo, N. Wang, Z. Wang, C. Liu, T. Jing, S. Chen, E. Cortes, S. A. Maier, S. Zhang, T. Li, Y. Yu, Y. Liu, X. Kang and H. Liang*, Mechanistic Insights into OC-COH Coupling in CO2 Electroreduction on Fragmented Copper, J. Am. Chem. Soc., 2022, 144, 14005-14011. https://doi.org/10.1021/jacs.2c01044
- Wang, G. Han, Z. Wang and Y. Wang*, Overcoming coke formation in high-temperature CO2 electrolysis, Chinese J. Catal., 2022, 43, 2938-2945. https://doi.org/10.1016/S1872-2067(22)64120-2
- K. Yao†, H. Wang, X. Yang, Y. Huang, C. Kou, T. Jing, S. Chen, Z. Wang, Y. Liu and H. Liang*, Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH, Appl. Catal. B-Environ., 2022, 311. https://doi.org/10.1016/j.apcatb.2022.121377
- S. Xu, R. Lu, K. Sun, J. Tang, Y. Cen, L. Luo, Z. Wang*, S. Tian* and X. Sun*, Synergistic Effects in N, O-Comodified Carbon Nanotubes Boost Highly Selective Electrochemical Oxygen Reduction to H2O2, Adv. Sci., 2022, 9, e2201421. https://doi.org/10.1002/advs.202201421
- T. Xia, Z. Wang and F. Li*, Seeing is believing: In-situ visualising dynamic evolution in CO2 electrolysis, Curr. Opin. Electrochem., 2022, 31. https://doi.org/10.1016/j.coelec.2021.100846
- N. Wang†, A. Xu†, P. Ou†, S. F. Hung†, A. Ozden, Y. R. Lu, J. Abed, Z. Wang, Y. Yan, M. J. Sun, Y. Xia, M. Han, J. Han, K. Yao, F. Y. Wu, P. H. Chen, A. Vomiero, A. Seifitokaldani, X. Sun, D. Sinton, Y. Liu*, E. H. Sargent* and H. Liang*, Boride-derived oxygen-evolution catalysts, Nat. Commun., 2021, 12, 6089. https://doi.org/10.1038/s41467-021-26307-7
- T. Peng, T. Zhuang, Y. Yan, J. Qian, G. R. Dick, J. Behaghel de Bueren, S. F. Hung, Y. Zhang, Z. Wang, J. Wicks, F. P. Garcia de Arquer, J. Abed, N. Wang, A. Sedighian Rasouli, G. Lee, M. Wang, D. He, Z. Wang, Z. Liang, L. Song, X. Wang, B. Chen, A. Ozden, Y. Lum, W. R. Leow, M. Luo, D. M. Meira, A. H. Ip, J. S. Luterbacher*, W. Zhao* and E. H. Sargent*, Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers, J. Am. Chem. Soc., 2021, 143, 17226-17235. https://doi.org/10.1021/jacs.1c08348
- S. Zhang†, Y. Li†, Z. Wang†, Y. Tang†, X. Huang†, S. D. House, H. Huang, Y. Zhou, W. Shen, J. Yang, C. Wang, Y. Zhao, R. Schlögl*, P. Hu* and F. Tao*, Coordination Number-Dependent Complete Oxidation of Methane on NiO Catalysts, ACS Catal., 2021, 11, 9837-9849. https://doi.org/10.1021/acscatal.1c01455
- X. Wang†, P. Ou†, J. Wicks†, Y. Xie†, Y. Wang†, J. Li, J. Tam, D. Ren, J. Y. Howe, Z. Wang, A. Ozden, Y. Z. Finfrock, Y. Xu, Y. Li, A. S. Rasouli, K. Bertens, A. H. Ip, M. Graetzel, D. Sinton and E. H. Sargent*, Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2, Nat. Commun., 2021, 12, 3387. https://doi.org/10.1038/s41467-021-23699-4
- J. Li†, A. Ozden†, M. Wan†, Y. Hu, F. Li, Y. Wang, R. R. Zamani, D. Ren, Z. Wang, Y. Xu, D. H. Nam, J. Wicks, B. Chen, X. Wang, M. Luo, M. Graetzel, F. Che, E. H. Sargent* and D. Sinton*, Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis, Nat. Commun., 2021, 12, 2808. https://doi.org/10.1038/s41467-021-23023-0
- Y. Wen†, P. Chen†, L. Wang†, S. Li†, Z. Wang, J. Abed, X. Mao, Y. Min, C. T. Dinh, P. Luna, R. Huang, L. Zhang, L. Wang, L. Wang, R. J. Nielsen, H. Li, T. Zhuang, C. Ke, O. Voznyy, Y. Hu, Y. Li, W. A. Goddard, III, B. Zhang*, H. Peng* and E. H. Sargent*, Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation, J. Am. Chem. Soc., 2021, 143, 6482-6490. https://doi.org/10.1021/jacs.1c00384
- Z. Wang† and E. H. Sargent*, Accurate and Affordable Explicit Solvent Quantum Mechanics for Electrocatalysis Investigations, Matter, 2021, 4, 12-14. https://doi.org/10.1016/j.matt.2020.12.014
- Z. Wang† and P. Hu*, Rational catalyst design for CO oxidation: a gradient-based optimization strategy, Catal. Sci. Technol., 2021, 11, 2604-2615. https://doi.org/10.1039/D0CY02053B
- Y. Li†, A. Xu†, Y. Lum†, X. Wang, S. F. Hung, B. Chen, Z. Wang, Y. Xu, F. Li, J. Abed, J. E. Huang, A. S. Rasouli, J. Wicks, L. K. Sagar, T. Peng, A. H. Ip, D. Sinton, H. Jiang, C. Li* and E. H. Sargent*, Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs, Nat. Commun., 2020, 11, 6190. https://doi.org/10.1038/s41467-020-20004-7
- B. Zhang†*, L. Wang†, Z. Cao†, S. M. Kozlov, F. P. García de Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Voznyy, R. Comin, P. De Luna, T. Regier, W. Bi, E. E. Alp, C.-W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo*, H. Peng* and E. H. Sargent*, High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics, Nat. Catal., 2020, 3, 985-992. https://doi.org/10.1038/s41929-020-00525-6
- Z. Wang†, Y. Li, J. Boes, Y. Wang and E. Sargent*, CO2 Electrocatalyst Design Using Graph Theory, Research Square, 2020, DOI: 10.21203/rs.3.rs-66715/v1. https://www.researchsquare.com/article/rs-66715/v1
- A. Ozden†, F. Li†, F. P. Garcı́a de Arquer, A. Rosas-Hernández, A. Thevenon, Y. Wang, S.-F. Hung, X. Wang, B. Chen, J. Li, J. Wicks, M. Luo, Z. Wang, T. Agapie*, J. C. Peters*, E. H. Sargent* and D. Sinton*, High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer, ACS Energy Lett., 2020, 5, 2811-2818. https://doi.org/10.1021/acsenergylett.0c01266
- J. Li†, A. Xu†, F. Li, Z. Wang, C. Zou, C. M. Gabardo, Y. Wang, A. Ozden, Y. Xu, D. H. Nam, Y. Lum, J. Wicks, B. Chen, Z. Wang, J. Chen, Y. Wen, T. Zhuang, M. Luo, X. Du, T. K. Sham, B. Zhang, E. H. Sargent* and D. Sinton*, Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption, Nat. Commun., 2020, 11, 3685. https://doi.org/10.1038/s41467-020-17499-5
- X. Wang†, Z. Wang†, F. P. García de Arquer, C.-T. Dinh, A. Ozden, Y. C. Li, D.-H. Nam, J. Li, Y.-S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T.-T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S.-F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton and E. H. Sargent*, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy, 2020, 5, 478-486. https://doi.org/10.1038/s41560-020-0607-8
- Zhong†, K. Tran†, Y. Min†, C. Wang†, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S. C. Lo, A. Ip, Z. Ulissi* and E. H. Sargent*, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature, 2020, 581, 178-183. https://doi.org/10.1038/s41586-020-2242-8
- C. S. Tan, Y. Hou, M. I. Saidaminov, A. Proppe, Y. S. Huang, Y. Zhao, M. Wei, G. Walters, Z. Wang, Y. Zhao, P. Todorovic, S. O. Kelley, L. J. Chen* and E. H. Sargent*, Heterogeneous Supersaturation in Mixed Perovskites, Adv. Sci., 2020, 7, 1903166. https://doi.org/10.1002/advs.201903166
- X. Chen†, Z. Wang, H. Daly, R. Morgan, H. Manyar, C. Byrne, A. S. Walton, S. F. R. Taylor, M. Smith, R. Burch, P. Hu and C. Hardacre*, Hydrogenation of benzoic acid to benzyl alcohol over Pt/SnO2, Appl. Catal. A-Gen., 2020, 593. https://doi.org/10.1016/j.apcata.2020.117420
- Y. Wang†, A. Xu†, Z. Wang†, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng and E. H. Sargent*, Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption, J. Am. Chem. Soc., 2020, 142, 5702-5708. https://doi.org/10.1021/jacs.9b13347
- X. Wang†, A. Xu†, F. Li, S. F. Hung, D. H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton and E. H. Sargent*, Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability, J. Am. Chem. Soc., 2020, 142, 3525-3531. https://doi.org/10.1021/jacs.9b12445
- J. Zhang†, Z. Wang†, W. Chen, Y. Xiong, W.-C. Cheong, L. Zheng, W. Yan, L. Gu, C. Chen, Q. Peng, P. Hu, D. Wang* and Y. Li*, Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes, Chem, 2020, 6, 725-737. https://doi.org/10.1016/j.chempr.2019.12.021
- Y. Lum†, J. E. Huang†, Z. Wang, M. Luo, D.-H. Nam, W. R. Leow, B. Chen, J. Wicks, Y. C. Li, Y. Wang, C.-T. Dinh, J. Li, T.-T. Zhuang, F. Li, T.-K. Sham, D. Sinton and E. H. Sargent*, Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol, Nat. Catal., 2020, 3, 14-22. https://doi.org/10.1038/s41929-019-0386-4
- Z. Wang and P. Hu, Gas Surface Interaction and Surface Reactions, Springer, 2020. https://doi.org/10.1007/978-3-030-46906-1_27
- Y. Ding†, Y. Xu, Y. Mao, Z. Wang and P. Hu*, Achieving rational design of alloy catalysts using a descriptor based on a quantitative structure-energy equation, Chem. Commun., 2020, 56, 3214-3217. https://doi.org/10.1039/C9CC09251J
- F. Li†, A. Thevenon†, A. Rosas-Hernandez†, Z. Wang†, Y. Li†, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z. Q. Liang, M. Luo, X. Wang, H. Li, C. P. O’Brien, C. S. Tan, D. H. Nam, R. Quintero-Bermudez, T. T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters* and E. H. Sargent*, Molecular tuning of CO2-to-ethylene conversion, Nature, 2020, 577, 509-513. https://doi.org/10.1038/s41586-019-1782-2
- M. Luo†, Z. Wang†, Y. C. Li†, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent*, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun., 2019, 10, 5814. https://doi.org/10.1038/s41467-019-13833-8
- Y. Wang†, Z. Wang†, C.-T. Dinh†, J. Li†, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.-S. Tan, C. M. Gabardo, M. Luo, H. Zhou, F. Li, Y. Lum, C. McCallum, Y. Xu, M. Liu, A. Proppe, A. Johnston, P. Todorovic, T.-T. Zhuang, D. Sinton, S. O. Kelley and E. H. Sargent*, Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis, Nat. Catal., 2019, 3, 98-106. https://doi.org/10.1038/s41929-019-0397-1
- X. Wang†, Z. Wang†, T. T. Zhuang, C. T. Dinh, J. Li, D. H. Nam, F. Li, C. W. Huang, C. S. Tan, Z. Chen, M. Chi, C. M. Gabardo, A. Seifitokaldani, P. Todorovic, A. Proppe, Y. Pang, A. R. Kirmani, Y. Wang, A. H. Ip, L. J. Richter, B. Scheffel, A. Xu, S. C. Lo, S. O. Kelley, D. Sinton and E. H. Sargent*, Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites, Nat. Commun., 2019, 10, 5186. https://doi.org/10.1038/s41467-019-13190-6
- J. Li†, Z. Wang†, C. McCallum†, Y. Xu, F. Li, Y. Wang, C. M. Gabardo, C.-T. Dinh, T.-T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent* and D. Sinton*, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal., 2019, 2, 1124-1131. https://doi.org/10.1038/s41929-019-0380-x
- T. T. Zhuang†, D. H. Nam†, Z. Wang†, H. H. Li, C. M. Gabardo, Y. Li, Z. Q. Liang, J. Li, X. J. Liu, B. Chen, W. R. Leow, R. Wu, X. Wang, F. Li, Y. Lum, J. Wicks, C. P. O’Brien, T. Peng, A. H. Ip, T. K. Sham, S. H. Yu, D. Sinton and E. H. Sargent*, Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products, Nat. Commun., 2019, 10, 4807. https://doi.org/10.1038/s41467-019-12788-0
- Y. C. Li†, G. Lee†, T. Yuan, Y. Wang, D.-H. Nam, Z. Wang, F. P. García de Arquer, Y. Lum, C.-T. Dinh, O. Voznyy and E. H. Sargent*, CO2 Electroreduction from Carbonate Electrolyte, ACS Energy Lett., 2019, 4, 1427-1431. https://doi.org/10.1021/acsenergylett.9b00975
- C. Li†, Z. Wang†, T. Yuan, D. H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arquer, Y. Wang, C. T. Dinh, O. Voznyy, D. Sinton and E. H. Sargent*, Binding Site Diversity Promotes CO2 Electroreduction to Ethanol, J. Am. Chem. Soc., 2019, 141, 8584-8591. https://pubs.acs.org/doi/abs/10.1021/jacs.9b02945
- Y. Tang†, Y. Wei†, Z. Wang†, S. Zhang, Y. Li, L. Nguyen, Y. Li, Y. Zhou, W. Shen, F. F. Tao* and P. Hu*, Synergy of Single-Atom Ni1 and Ru1 Sites on CeO2 for Dry Reforming of CH4, J. Am. Chem. Soc., 2019, 141, 7283-7293. https://pubs.acs.org/doi/abs/10.1021/jacs.8b10910
- M. Hangaard Hansen, J. A. Garrido Torres, P. C. Jennings, Z. Wang, J. R. Boes, O. G. Mamun and T. Bligaard*, An Atomistic Machine Learning Package for Surface Science and Catalysis, ArXiv, 2019. https://arxiv.org/abs/1904.00904
- Y. Pang†, J. Li†, Z. Wang, C.-S. Tan, P.-L. Hsieh, T.-T. Zhuang, Z.-Q. Liang, C. Zou, X. Wang, P. De Luna, J. P. Edwards, Y. Xu, F. Li, C.-T. Dinh, M. Zhong, Y. Lou, D. Wu, L.-J. Chen, E. H. Sargent* and D. Sinton*, Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper, Nat. Catal., 2019, 2, 251-258. https://doi.org/10.1038/s41929-019-0225-7
- F. Li†, Y. C. Li†, Z. Wang†, J. Li, D.-H. Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S.-F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C.-T. Dinh, Y. Wang, T.-T. Zhuang, D. Sinton and E. H. Sargent*, Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces, Nat. Catal., 2019, 3, 75-82. https://doi.org/10.1038/s41929-019-0383-7
- Z. Wang and P. Hu*, Identifying the general trend of activity of non-stoichiometric metal oxide phases for CO oxidation on Pd(111), Sci. China Chem., 2019, 62, 784-789. https://link.springer.com/article/10.1007/s11426-018-9445-7
- X. Cheng, Z. Wang, Y. Mao and P. Hu*, Evidence of the O-Pd-O and Pd-O4 structure units as oxide seeds and their origin on Pd(211): revealing the mechanism of surface oxide formation, Phys. Chem. Chem. Phys., 2019, 21, 6499-6505. https://doi.org/10.1039/C8CP06224B
- T.-T. Zhuang†, Y. Pang†, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C. T. Dinh, P. De Luna, P.-L. Hsieh, T. Burdyny, H.-H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, D.-H. Nam, Z.-Y. Wu, Y.-R. Zheng, A. H. Ip, H. Tan, L.-J. Chen, S.-H. Yu, S. O. Kelley, D. Sinton* and E. H. Sargent*, Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide, Nata. Catal., 2018, 1, 946-951. https://doi.org/10.1038/s41929-018-0168-4
- J. Li†, F. Che†, Y. Pang†, C. Zou†, J. Y. Howe, T. Burdyny, J. P. Edwards, Y. Wang, F. Li, Z. Wang, P. De Luna, C. T. Dinh, T. T. Zhuang, M. I. Saidaminov, S. Cheng, T. Wu, Y. Z. Finfrock, L. Ma, S. H. Hsieh, Y. S. Liu, G. A. Botton, W. F. Pong, X. Du, J. Guo, T. K. Sham, E. H. Sargent* and D. Sinton*, Copper adparticle enabled selective electrosynthesis of n-propanol, Nat. Commun., 2018, 9, 4614. https://doi.org/10.1038/s41467-018-07032-0
- Y. Chen†, B. deGlee†, Y. Tang†, Z. Wang, B. Zhao, Y. Wei, L. Zhang, S. Yoo, K. Pei, J. H. Kim, Y. Ding, P. Hu, F. F. Tao* and M. Liu*, A robust fuel cell operated on nearly dry methane at 500°C enabled by synergistic thermal catalysis and electrocatalysis, Nat. Energy, 2018, 3, 1042-1050. https://doi.org/10.1038/s41560-018-0262-5
- Q. Zhu, Z. Wang, L. Chen*, H. Cheng and Z. Qi, Ionic-Liquid-Controlled Two-Dimensional Monolayer Bi2MoO6 and Its Adsorption of Azo Molecules, ACS Appl. Nano Mater., 2018, 1, 5083-5091. https://doi.org/10.1021/acsanm.8b01186
- Guo†, Z. Wang, D. Wang, H.-F. Wang* and P. Hu*, First-Principles Determination of CO Adsorption and Desorption on Pt(111) in the Free Energy Landscape, J. Phys. Chem. C, 2018, 122, 21478-21483. https://doi.org/10.1021/acs.jpcc.8b06782
- S. Tian†, Z. Wang†, W. Gong†, W. Chen, Q. Feng, Q. Xu, C. Chen, C. Chen, Q. Peng, L. Gu, H. Zhao, P. Hu, D. Wang* and Y. Li*, Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru1/mpg-C3N4 Catalyst, J. Am. Chem. Soc., 2018, 140, 11161-11164. https://doi.org/10.1021/jacs.8b06029
- Y. Han†, Z. Wang†, R. Xu, W. Zhang, W. Chen, L. Zheng, J. Zhang, J. Luo, K. Wu, Y. Zhu, C. Chen, Q. Peng, Q. Liu, P. Hu, D. Wang* and Y. Li*, Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles, Angew Chem. Int. Ed., 2018, 57, 11262-11266. https://doi.org/10.1002/anie.201805467
- Z. Wang† and P. Hu*, A rational catalyst design of CO oxidation using the bonding contribution equation, Chem. Commun., 2017, 53, 8106-8109. https://doi.org/10.1039/C7CC02900D
- C. E. Stere†, J. A. Anderson, S. Chansai, J. J. Delgado, A. Goguet, W. G. Graham, C. Hardacre*, S. F. R. Taylor, X. Tu, Z. Wang and H. Yang, Non-Thermal Plasma Activation of Gold-Based Catalysts for Low-Temperature Water-Gas Shift Catalysis, Angew. Chem. Int. Ed., 2017, 56, 5579-5583. https://doi.org/10.1002/anie.201612370
- Z. Wang† and P. Hu*, Formulating the bonding contribution equation in heterogeneous catalysis: a quantitative description between the surface structure and adsorption energy, Phys. Chem. Chem. Phys., 2017, 19, 5063-5069. https://doi.org/10.1039/C6CP08493A
- G. Gibson†, Z. Wang, C. Hardacre and W. F. Lin*, Insights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO2 catalyst, Phys Chem Chem Phys, 2017, 19, 3800-3806. https://doi.org/10.1039/C6CP06906A
- Y. Mao†, Z. Wang, H.-F. Wang* and P. Hu*, Understanding Catalytic Reactions over Zeolites: A Density Functional Theory Study of Selective Catalytic Reduction of NOx by NH3 over Cu-SAPO-34, ACS Catal., 2016, 6, 7882-7891. https://pubs.acs.org/doi/abs/10.1021/acscatal.6b01449
- Z. Wang† and P. Hu*, Towards rational catalyst design: a general optimization framework, Philos. Trans. A Math. Phys. Eng. Sci., 2016, 374. https://doi.org/10.1098/rsta.2015.0078
- Z. Wang†, X. Liu, D. W. Rooney and P. Hu*, Elucidating the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts: A density functional theory study, Surf. Sci., 2015, 640, 181-189. https://doi.org/10.1016/j.susc.2015.01.004
- F. F. Tao*, J. J. Shan†, L. Nguyen†, Z. Wang†, S. Zhang, L. Zhang, Z. Wu, W. Huang, S. Zeng and P. Hu*, Understanding complete oxidation of methane on spinel oxides at a molecular level, Nat. Commun., 2015, 6, 7798. https://www.nature.com/articles/ncomms8798
- Z. Wang†, H. F. Wang and P. Hu*, Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces, Chem. Sci., 2015, 6, 5703-5711. https://pubs.rsc.org/en/content/articlelanding/2015/sc/c5sc01732g
- Z. Wang† and P. Hu*, Some Attempts in the Rational Design of Heterogeneous Catalysts Using Density Functional Theory Calculations, Top. Catal., 2015, 58, 633-643. https://link.springer.com/article/10.1007/s11244-015-0406-9
- K. Xu†, D.-Q. Wei*, Z. Wang, P. Lian, L. Huang, X.-R. Chen*, L. Chen, Q. Zhang and G.-F. Ji, Extraordinary mechanical properties of monatomic C3N2 chain, Mol. Simul., 2014, 41, 256-261. https://doi.org/10.1080/08927022.2013.869806
- Z. Wang†, X. M. Cao, J. Zhu and P. Hu*, Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory, J. Catal., 2014, 311, 469-480. https://doi.org/10.1016/j.jct.2011.12.006
- Z. Wang†, B. Yang, Y. Wang, Y. Zhao, X. M. Cao and P. Hu*, Identifying the trend of reactivity for sp2 materials: an electron delocalization model from first principles calculations, Phys. Chem. Chem. Phys., 2013, 15, 9498-9502. https://doi.org/10.1039/C3CP51375K
- T. Zhou†, Z. Wang, L. Chen, Y. Ye, Z. Qi, H. Freund and K. Sundmacher*, Evaluation of the ionic liquids 1-alkyl-3-methylimidazolium hexafluorophosphate as a solvent for the extraction of benzene from cyclohexane: (Liquid+liquid) equilibria, J. Chem. Thermodyn., 2012, 48, 145-149. https://doi.org/10.1016/j.jct.2011.12.006
- T. Zhou†, Z. Wang, Y. Ye, L. Chen, J. Xu and Z. Qi*, Deep Separation of Benzene from Cyclohexane by Liquid Extraction Using Ionic Liquids as the Solvent, Ind. Eng. Chem. Res., 2012, 51, 5559-5564. https://pubs.acs.org/doi/10.1021/ie202728j